
Programmers with too much time on their hands

I finally got around to reading the Sept. 14, 1993
PC Magazine, and came across the article
ªMultithreading and Graphics Under Windows
NTº by Charles Petzold.    It describes a simple
multi-threaded app: four windows are continually
updated to display an increasing sequence of
numbers, an increasing sequence of fibonacci
numbers, an increasing series of primes, and a
series of circles of random size drawn in random
places.

As I'm pretty annoyed by all the hype
surrounding NT, I figured I'd do it under
NeXTSTEP.    This is the result.    It does nothing
useful, really, just what's described above.

Using the Program

Start it up.    Select the Run menu item.    Look at
the pretty pictures and text.    When you've had
enough, select the Stop menu item. Repeat as
needed.

Compare and Contrast

So, what's the difference between the NeXTSTEP
version and the NT version?    The NeXTSTEP
version is more functional, basically.    You can
copy & paste the text from the windows, print,
fax, edit the text, and this help file is around.   
The NeXT version uses distributed objects as a
communication tool, so it would be extremely
easy to write a distributed app that wrote data
back to the display windows. (Basically, you'd
just have to cut & paste the code in the treads to
a new app and compile).    So, in theory, you
could have some high-zoot piece of iron
calculating bond yields or whatever,and updating

your display on a humble Intel PC.

The NeXT version uses distributed objects to
serialize output to the window server.    The
appkit is not thread-safe (making it so would be a
big performance hitÐyou'd constantly be
checking for mutex locks and the like), so only
one thread can access it at a time.    We do this
by creating a server object, and having the
threads message the server.    The server handles
the client requests in order, ensuring that only
one thread is writing to the screen at a time.   
Petzold says that ªexperimentation seems to
show that Windows NT properly serializes access
to the graphics functions.º    So it's unclear to me
that NT is supposed to be able to have
simultaneous access to the window server from
multiple threads, or if this just happens to work
by happenstance and luck, like most PC software.

Output to the window continues during window
dragging and the like.    The server gets and
dispatches remote events by looking during the
main event loop.

The line count is pretty close to being the same
for both programs.    Petzold's looks to be around
300 lines long, eyeball estimate, while this runs
around 600 according to wc.    But I have a lot of
comments and a coding style that uses a lot of
whitespace.    The number of lines with
semicolons is around 200.    I'll leave it to the
reader to determine which is more
understandable.

Don't try to compare the two on speed.    I
haven't optimized this at all; it's pretty naive in a
some places that count.

Highlights

·Distributed Objects. Fun stuff: write four client
apps, and have them message the server object,
each updating one of the views in the window.   
Five different processes communicating
seamlessly.    Tres qool.     

·Threads.    Amusing.    Uses the cthreads package
to fork and detach functions.

·Drawing. Hack some postscript and get more
interesting pictures to display in window # 4.

Don McGregor
mcgredo@prism.cs.orst.edu

